Non-axisymmetric equilibrium reconstruction on the Compact Toroidal Hybrid Experiment using external magnetic and soft x-ray measurements

AUBURN
UNIVERSITY

M. Cianciosa, J.D. Hanson, G.J. Hartwell, S.F. Knowlton, D.A. Maurer, D.A. Ennis, J.L. Herfindal Auburn University

Introduction & Motivation

- Compact Toroidal Hybrid (CTH) is a small torsatron/tokamak hybrid device with magnetic configuration that can be strongly modified by ohmic plasma currents.
- ➤ Reconstruction of non-axisymmetric, three-dimensional (3D) plasma equilibria is important for understanding intrinsic 3D confinement and stability in stellarators.
- ➤ 3D equilibrium reconstruction on this device attempts to determine the internal current profile, net rotational transform profile in order to understand the stability and disruptive characteristics of these hybrid stellarator/tokamak plasmas.
- > Previous work has shown that density limit disruption can be avoided with additional helical vacuum transform.

Non-axisymmetric plasma in CTH

- The poloidal cross-section of CTH discharges becomes less elliptical with addition of plasma current.
- > The underlying toroidal n=5 stellarator periodicity is enhanced.
- > 3D reconstruction is required in CTH hybrid discharges

Diagnostics Used in Reconstructions

Magnetic diagnostics

Two-color SXR system

V3FIT is Used to Reconstruct 3D Equilibrium

- ➤ V3FIT [1] is used for reconstructing fully 3D plasma equilibrium.
- V3FIT computes best fitting between data signals calculated from given equilibrium model and experimental measures.
- CTH has chosen VMEC [2] as the equilibrium solver for V3FIT.
- ➤ V3FIT utilizes measurements from magnetic diagnostics, SXR cameras and interferometer.

[1] J.D. Hanson, S.P. Hirshman, S.F. Knowlton, L.L. Lao, E.A. Lazarus, and J.M. Shields, Nucl. Fusion 49, 075031 (2009)

[2] S.P. Hirshman and D.K. Lee, Comput. Phys. Commun. 39, 161 (1986)

Whole Shot Reconstruction with Magnetic Diagnostics

- The current profile parametrization is based on a single fitting parameter α : $I'(s) = I_o(1 s^{\alpha})^6$
- Hesitations are observed in the rise of plasma current.
- \triangleright MHD oscillations observed by B₀-dot coils
- > Edge safety factor goes through integer values
- > Sudden narrowing of current profile.
- ➤ Using magnetics alone does not give accurate estimation of internal current profile.

Inversion channels are

projected on the equilibrium

surface to identify the

inversion surface.

Measured Sawtooth Inversion Radius Applied to Reconstruction

Sawteeth are observed in CTH plasmas with sufficient density

Bi-orthogonal Decomposition shows the structure of sawteeth and is used to identify the inversion channels

➤ Inversion channel calculated using BD is consistent with the result using cross-correlation analysis.

- Reconstruction using inversion information results a much more peaked current profile ($\alpha = 1.7 \pm 0.14$).
- Reconstruction of the same discharge with magnetics alone yields $\alpha = 7.5 \pm 4.6$.
- alone yields $\alpha = 7.5 \pm 4.6$. \triangleright The resulting q-profile is flatter at minimum value of 0.9.

Reconstruction of the Same Sawtooth Discharge with SXR Emission

- > SXR emissivity is assumed to be constant on flux surfaces.
- > Flux surface geometry is fitted by V3FIT using multiply chordal SXR emission.
- > SXR data acquired from three 20-channel cameras with 2 different filters.

- > Reconstruction without sawtooth inversion still finds q=1 surface near the magnetic axis.
- > Reconstructed current profile is more peaked compared to the one from magnetics alone.
- > Similar q and current profiles obtained as the reconstruction using inversion information.

Density limit disruption suppression in CTH

Density limit disruptions observed in CTH by ramping density with edge fueling

Red: low vacuum transform (0.02)
Blue: high vacuum transform (0.11)

Reconstructions of the two discharges at the same time slice

Addition of vacuum transform found to flatten both current and transform profiles, leading to a more stable regime.

Collection of 190 density limit disruption discharges with varying vacuum transform

➤ Density at disruption exceeds Greenwald limit as vacuum transform is increased

➤ High density plasmas tends to disrupt with more peaked current profile with increasing 3D fields

The pressure has limited effect on the reconstructed q-profile for a low-beta plasma configuration.